Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 957: 175931, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37495038

RESUMO

In recent years, a new target closely linked to a variety of diseases has appeared in the researchers' vision, which is the NLRP3 inflammasome. With the deepening of the study of NLRP3 inflammasome, it was found that it plays an extremely important role in a variety of physiological pathological processes, and NLRP3 inflammasome was also found to be associated with some age-related diseases. It is associated with the development of insulin resistance, Alzheimer's disease, Parkinson's, cardiovascular aging, hearing and vision loss. At present, the only clinical approach to the treatment of NLRP3 inflammasome-related diseases is to use anti-IL-1ß antibodies, but NLRP3-specific inhibitors may be better than the IL-1ß antibodies. This article reviews the relationship between NLRP3 inflammasome and aging diseases: summarizes some of the relevant experimental results reported in recent years, and introduces the biological signals or pathways closely related to the NLRP3 inflammasome in a variety of aging diseases, and also introduces some promising small molecule inhibitors of NLRP3 inflammasome for clinical treatment, such as: ZYIL1, DFV890 and OLT1177, they have excellent pharmacological effects and good pharmacokinetics.


Assuntos
Envelhecimento , Inflamassomos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia
2.
J Pharm Anal ; 13(6): 563-589, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37440909

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) frequently results in sudden death and poses a serious threat to public health worldwide. The drugs approved for the prevention and treatment of ASCVD are usually used in combination but are inefficient owing to their side effects and single therapeutic targets. Therefore, the use of natural products in developing drugs for the prevention and treatment of ASCVD has received great scholarly attention. Andrographolide (AG) is a diterpenoid lactone compound extracted from Andrographis paniculata. In addition to its use in conditions such as sore throat, AG can be used to prevent and treat ASCVD. It is different from drugs that are commonly used in the prevention and treatment of ASCVD and can not only treat obesity, diabetes, hyperlipidaemia and ASCVD but also inhibit the pathological process of atherosclerosis (AS) including lipid accumulation, inflammation, oxidative stress and cellular abnormalities by regulating various targets and pathways. However, the pharmacological mechanisms of AG underlying the prevention and treatment of ASCVD have not been corroborated, which may hinder its clinical development and application. Therefore, this review summarizes the physiological and pathological mechanisms underlying the development of ASCVD and the in vivo and in vitro pharmacological effects of AG on the relative risk factors of AS and ASCVD. The findings support the use of the old pharmacological compound ('old bottle') as a novel drug ('novel wine') for the prevention and treatment of ASCVD. Additionally, this review summarizes studies on the availability as well as pharmaceutical and pharmacokinetic properties of AG, aiming to provide more information regarding the clinical application and further research and development of AG.

3.
Bioorg Chem ; 138: 106592, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37178650

RESUMO

Pulmonary fibrosis is the end-stage change of a large class of lung diseases characterized by the proliferation of fibroblasts and the accumulation of a large amount of extracellular matrix, accompanied by inflammatory damage and tissue structure destruction, which also shows the normal alveolar tissue is damaged and then abnormally repaired resulting in structural abnormalities (scarring). Pulmonary fibrosis has a serious impact on the respiratory function of the human body, and the clinical manifestation is progressive dyspnea. The incidence of pulmonary fibrosis-related diseases is increasing year by year, and no curative drugs have appeared so far. Nevertheless, research on pulmonary fibrosis have also increased in recent years, but there are no breakthrough results. Pathological changes of pulmonary fibrosis appear in the lungs of patients with coronavirus disease 2019 (COVID-19) that have not yet ended, and whether to improve the condition of patients with COVID-19 by means of the anti-fibrosis therapy, which are the questions we need to address now. This review systematically sheds light on the current state of research on fibrosis from multiple perspectives, hoping to provide some references for design and optimization of subsequent drugs and the selection of anti-fibrosis treatment plans and strategies.


Assuntos
COVID-19 , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , COVID-19/patologia , Pulmão , Fibrose , Fibroblastos
4.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985444

RESUMO

Metformin is a first-line drug for the clinical treatment of type 2 diabetes; however, it always leads to gastrointestinal tolerance, low bioavailability, short half-life, etc. Liposome acts as an excellent delivery system that could reduce drug side effects and promote bioavailability. Hyodeoxycholic acid, a cholesterol-like structure, can regulate glucose homeostasis and reduce the blood glucose levels. As an anti-diabetic active ingredient, hyodeoxycholic acid modifies liposomes to make it overcome the disadvantages of metformin as well as enhance the hypoglycemic effect. By adapting the thin-film dispersion method, three types of liposomes with different proportions of hyodeoxycholic acid and metformin were prepared (HDCA:ME-(0.5:1)-Lips, HDCA:ME-(1:1)-Lips, and HDCA:ME-(2:1)-Lips). Further, the liposomes were characterized, and the anti-type 2 diabetes activity of liposomes was evaluated. The results from this study indicated that three types of liposomes exhibited different characteristics-Excessive hyodeoxycholic acid decreased encapsulation efficiency and drug loading. In the in vivo experiments, liposomes could reduce the fasting blood glucose levels, improve glucose tolerance, regulate oxidative stress markers and protect liver tissue in type 2 diabetic mice. These results indicated that HDCA:ME-(1:1)-Lips was the most effective among the three types of liposomes prepared and showed better effects than metformin. Hyodeoxycholic acid can enhance the hypoglycemic effect of metformin and play a suitable role as an excipient in the liposome.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metformina , Camundongos , Animais , Lipossomos/química , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
5.
Int J Biol Macromol ; 194: 945-953, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838858

RESUMO

Cotton fibers mainly consist of cellulose biological macromolecule, and its exceedingly flammable nature has severely restricted its application in the fields requiring flame retardancy. To endow cotton fabric with excellent flame retardancy and superior durability, a high-efficiency durable flame retardant (THPO-P) with ammonium phosphate ester and phosphine oxide groups was synthesized and chemically bonded to cotton fabric through padding-baking method. THPO-P showed high flame-retardant efficiency, and the add-on of 5.9% was sufficient to prepare cotton fabric with self-extinguished feature. With the add-on of 19.9%, treated fabric possessed excellent fire safety and durability. The total heat release and peak heat release rate values reduced by 77.1% and 91.8% in contrast to pristine fabric, respectively. Its LOI value still reached up to 33.4% even after 50 laundering cycles, which was far beyond the flame-retardant standard. THPO-P played flame-retardant role by restraining the release of flammable volatiles, liberating nonflammable gases and promoting the char formation during combustion. The flame-retardant treatment deteriorated the tensile strength, whiteness and softness of cotton fabric.


Assuntos
Celulose/química , Fibra de Algodão/análise , Ésteres/química , Retardadores de Chama/análise , Fosfatos/química , Fosfinas/química , Têxteis/análise , Técnicas de Química Sintética , Retardadores de Chama/síntese química , Estrutura Molecular , Óxidos , Análise Espectral , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...